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Abstract
1.	 Preserved assemblages of invertebrate remains in lacustrine sediment reveal 

temporal variations of community composition and environmental conditions. 
However, records for large tropical lakes are scarce. Lake Victoria, the largest 
tropical lake, has a dynamic history of changes in water level, biogeochemistry 
and fish community composition over the past ~17,000 cal yr BP.

2.	 In order to quantify changes in the invertebrate assemblage of Lake Victoria from 
the late Pleistocene throughout the Holocene, we examined chitinous remains of 
Cladocera and larval dipterans (Chironomidae and Chaoboridae) from a sediment 
core (37 m water depth) dated from ~13,700 cal yr BP to present.

3.	 We identified four major phases in the invertebrate assemblage throughout this 
period of lake history. Firstly, Chironomidae and Chaoboridae appeared at low 
abundances during the earliest stages of lake inundation in the late Pleistocene, 
at a time when Cladocera were notably absent. Secondly, chaoborids and chirono-
mids increased in abundance during the mid-Holocene, which coincided with high 
diatom production toward the end of the Holocene African Humid Period. Thirdly, 
starting ~4,700 cal yr BP, Alona, a predominantly littoral cladoceran genus, consist-
ently appeared in the invertebrate assemblage alongside changes in mixing regimes 
and persisted throughout the late Holocene to the present. Fourthly, the arrival of 
both Chydorus and Bosmina longirostris marked the establishment of an abundant 
cladoceran assemblage at ~1,350 cal yr BP. The assemblage then gradually shifted 
toward the increasing dominance of B. longirostris, a planktonic cladoceran.

4.	 Several of the observed changes in the invertebrate assemblage occurred concur-
rently with changes in climatic conditions in East Africa and diatom productivity 
that have been previously recorded in Lake Victoria. This multi-millennial record 
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1  |  INTRODUC TION

One of the major goals of community ecology is to understand 
covariation of environmental conditions and community composi-
tion (Vellend, 2010) over a wide range of timescales (Shurin, 2007; 
Tomasových & Kidwell,  2010). Species turnover in communities is 
typically inferred from either among-site variation along broad en-
vironmental gradients (Leibold et al., 1997; Shurin et al., 2010), or 
from within-site variation over long records of ecosystem monitor-
ing (typically decades; Korhonen et al., 2010). Palaeoecological re-
cords extend the timescale over which observations of covariation 
in communities and environmental processes can be made (Rillo 
et  al.,  2022). In lakes, long-term dynamics provide unique insights 
into how processes associated with community (dis)assembly (e.g., 
timing of species arrival, shifts in dominance) relate to changes in 
both regional climatic variability and catchment-scale dynamics at 
centennial and millennial timescales (Jackson & Blois, 2015; Mergeay 
et al., 2011). As such, these records can help to reveal how environ-
mental change and species interactions jointly influence community 
dynamics (Gu et al., 2021; Jeppesen et al., 2005; Otake et al., 2021).

Microfossils isolated from lake sediment cores provide the op-
portunity to examine the temporal patterns of community assem-
bly. In particular, aquatic invertebrate remains are useful biological 
indicators of past environmental change and to make inferences 
about trophic interactions within lake ecosystems (Frey,  1960; 
Hofmann, 1988; Korhola & Rautio, 2001; Walker, 2001). As aquatic 
invertebrates are sensitive to both bottom-up and top-down trophic 
controls, observed shifts in community composition are potentially 
indicative of changes in both the lake environment and food-web 
structure (Brahney et al., 2010; Eggermont & Heiri, 2012; Frolova 
et al., 2017; Heiri et al., 2003; Korponai et al., 2011; Labaj et al., 2021; 
Sweetman & Smol, 2006; Verschuren, Tibby, et al., 2000). Examining 
multiple invertebrate taxonomic groups in parallel, with different 
ecological affinities, strengthens inferences about the underly-
ing causes of compositional change of communities (De Meester 
et al., 2023; Ursenbacher et al., 2020; Verschuren, Tibby, et al., 2000). 
For example, a previous study that included an analysis of both cla-
docerans (water fleas; Crustacea: Branchiopoda) and chironomid lar-
vae (non-biting midges; Insecta: Diptera: Chironomidae), suggested 
that compositional change of cladoceran communities responded to 
vegetation and fish predation, whereas chironomids communities 
responded to fluctuating water levels (Płóciennik et al., 2020).

Palaeolimnological studies have disproportionally focused on 
temperate rather than tropical lakes based on global lake abundance 

estimates (Escobar et al., 2020; Verpoorter et al., 2014). Many pre-
vious studies have documented the history of zooplankton assem-
blages in temperate lakes, providing important insights into the 
environmental drivers of changes in these ecosystems over decadal-
to-centennial scales (Allen et al., 2011; Cáceres et al., 2005; Otake 
et al., 2021). However, few palaeoecological records from lakes in 
East Africa have documented the changes in invertebrate commu-
nity composition from the initial lake formation and throughout the 
entire ontogeny of ecosystem development (Table 1). For example, 
tropical Lake Naivasha varied dramatically in water depth over the 
past 1,800 years (<5 to ~35-m-deep lake), and zooplankton remains 
were used to investigate the joint roles of priority effects and spe-
cies sorting in determining the assembly dynamics of Daphnia com-
munities (Mergeay et al., 2011). Invertebrate studies of Lake Victoria 
have only previously examined changes over the past 200 years 
(Bridgeman, 2001; Verschuren et al., 2002) despite the modern lake 
having formed over ~17,000–15,000 cal yr BP (0 cal yr BP = 1950 
CE; Johnson et  al.,  1996, 2000; Temoltzin-Loranca et  al.,  2023). 
Additionally, most invertebrate assemblage studies within the re-
gion have focused solely on one or two taxonomic groups (Table 1). 
Therefore, there remains a major gap in our understanding of the 
long-term successional patterns of invertebrate community assem-
bly in response to environmental variation in large tropical lakes.

Located in East Africa, Lake Victoria (Figure  1) covers an area 
of ~69,000 km2 within Kenya, Uganda and Tanzania. As the world's 
largest freshwater fishery, it supports an estimated 35 million 
people within the region who rely on the lake as a source of food, 
employment and water (Njiru et al., 2018). Lake Victoria is of par-
ticular interest for the study of community assembly owing to its 
relatively young geological age (~17,000–15,000 years; Table 1), ex-
traordinary biodiversity and dynamic ecosystem history (Figure  2; 
Seehausen, 2002). For example, the Lake Victoria ecosystem has not 
only experienced dynamic periods of climatic variation, water-level 
fluctuation and ecosystem productivity (Berke et al., 2012; Beuning, 
Kelts, et al., 1997; Johnson et al., 1996, 1998, 2000; Kendall, 1969; 
Ngoepe et  al.,  2023; Stager & Johnson,  2000, 2008; Talbot & 
Lærdal,  2000; Wienhues et  al.,  2023), but also has generated a 
spectacular adaptive radiation of >500 species of haplochromine 
cichlid fish (Goldschmidt & Witte,  1992; Greenwood,  1974; Meier 
et al., 2017; Seehausen, 2002). To date, however, no previous study 
has analysed the fossil invertebrate assemblages of Lake Victoria for 
a time period spanning more than a few centuries. Here, we examine 
sedimentary invertebrate remains from a new Lake Victoria sediment 
core (Figure  1; LVC18_S1, hereafter LV1, located at 01°06.914′ S, 
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of sedimentary invertebrate assemblages in Lake Victoria elucidates some of the 
temporal development of these communities throughout most of the dynamic 
modern history of the ecosystem.
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33°55.146′ E at a 37 m water-column depth, ~9 km from the nearest 
shore) to explore changes in invertebrate community composition 
over ~14,000 years of the lake's history.

The dynamic nature of hydroclimatic and other environmental 
conditions in East Africa over the past ~17,000 cal yr BP (Figure 2) 
lends itself to multiple research objectives regarding the inverte-
brate assemblage of Lake Victoria. Firstly, we examine if the timing 
of arrival and establishment of invertebrate groups coincides with 
changing regional climatic conditions (e.g., Holocene African Humid 
Period; AHP). Secondly, we investigate whether changes in species 
abundances co-vary with proxies of environmental change within 
the lake inferred from geochemical analysis of previously collected 
sediment cores described by Stager and Johnson et al.  (2000) and 
Berke et al.  (2012). Thirdly, we explore how compositional change 
over the whole record might provide insight into invertebrate com-
munity assembly processes (e.g., rise of a pelagic environment). 
Additionally, we discuss our results in relation to other environmen-
tal changes in the Lake Victoria region; including the timing of lake 
filling, the radiation of cichlids, the decline of diatom production in 
the mid-Holocene and changes in wind-driven mixing inferred from 
diatoms (Berke et al., 2012; Greenwood, 1974; Johnson et al., 2000; 
Seehausen, 2002; Stager & Johnson, 2000).

2  |  METHODS

2.1  |  Study site

Situated in a depression between the eastern and the western branch 
of the East African Rift, Lake Victoria is moderately shallow (mean 
depth 40 m, maximum depth 68 m; Johnson et al., 2000) with an ex-
tensive surface area of ~68,800 km2. As a consequence of the shallow 
nature of the lake, its large size and its positioning along the equa-
tor under variable environmental conditions, the ecological dynam-
ics of Lake Victoria are exceptionally sensitive to climatic changes in 
the region (Figure 2; Beuning, Kelts, et al., 1997; Johnson et al., 2000; 
Kendall, 1969; Stager et al., 1986; Stager & Johnson, 2000). The lake 
is at the intersection of savanna, rainforest and Afromontane biomes; 
thus, minor climatic changes (e.g., precipitation or temperature) can 
cause major lake-level fluctuations and shifts in the major terres-
trial biome surrounding the lake (Temoltzin-Loranca et  al.,  2023). 
Previous work has speculated that the formation of the lake basin 
~400,000 years ago was followed by several lake level regressions 
and transgressions that may have occurred corresponding to a com-
bination of high- and low-latitude climate forcing, and catchment 
hydroclimate and ecosystem variability (Johnson et  al.,  2000). The 
most recent major desiccation of the modern lake basin is estimated 
at ~17,000 cal yr BP (Johnson et  al.,  1996, 2000; Temoltzin-Loranca 
et al., 2023), contemporaneous with other lakes in the region (Beuning, 
Talbot, & Kelts,  1997; Gasse,  2000). Following the late Pleistocene 
desiccation, the lake began to fill at ~16,600 cal yr BP and modern 
lake levels were established ~14,000–10,000 cal yr BP (Wienhues 
et al., 2023). Thus, the coring location of LV1 was continuously inun-
dated over the period which our core encompasses. During this past 
history of the modern lake, the region experienced alternating wet-
ter and drier periods, most notably during the AHP from ~11,500 to 
5500 cal yr BP (Berke et  al.,  2012; de Menocal et  al.,  2000), associ-
ated with changes from savannah to rainforest and back to savan-
nah, as inferred from pollen data (Kendall, 1969; Temoltzin-Loranca 
et  al.,  2023). Additionally, Berke et  al.  (2012) measured two geo-
chemical proxies, TEX86 and δDwax, indicative of lake water tempera-
ture and precipitation, respectively (Castañeda & Schouten,  2011), 
from V95-1P (Figure 1) to examine the surrounding climatic changes. 
δDwax values are generally inversely correlated with rainfall amount 
in the tropics (Rozanski et  al., 2013), and have been shown to be a 
useful indicator of hydroclimate variability throughout Africa (Tierney 
et al., 2008). Previous research has posited that such changes in mon-
soonal circulation and precipitation–evaporation relationships could 
be important drivers of community change across the entire food 
web. For example, previous work has inferred four phases of diatom 
production based on biogenic silica (BSi) and diatom microfossils pre-
served in a previously examined sediment core, V95-2P (Figures  1 
and 2; Stager & Johnson,  2000). Furthermore, within this relatively 
short geological history of the modern lake the adaptive radiation of 
haplochromine cichlid fish produced >500 endemic species spanning 
14 different trophic groups (Greenwood, 1974, 1980; Kaufman, 1992; 
Seehausen et al., 1997; Seehausen, 2002).

F I G U R E  1  Bathymetric map of Lake Victoria, adapted from 
Hamilton et al. (2022), showing the coring locations of LV1 
(white; 01°06.914′ S, 33°55.146′ E at 37 m water depth ), V95-
2P (pink; 00°58.67′ S, 33°27.32′ E at 67 m water depth; Stager & 
Johnson, 2000) and V95-1P (orange; 00°27.630′ S, 33°25.090′ E at 
68 m water depth; Berke et al., 2012).
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664  |    KING et al.

2.2  |  Sediment core analyses

Sediment cores were collected from Lake Victoria (Figure 1; LV1) in 
October 2018 using an UWITEC piston corer (Mondsee, Austria) on 
a floating platform located ~9 km offshore at a water depth of 37 m. 
Given the relative agreement between BSi profiles of LV1 and other 
deep-water sediment cores from Lake Victoria over the same age 
range (V95-2P, r = 0.54, p < 0.001; V95-1P, r = 0.56, p < 0.001), our re-
cord represents a spatial region toward the eastern sector of the lake 
that is unlikely to be completely anomalous to deepwater represen-
tations of planktonic versus littoral invertebrate assemblages. The 
LV1 composite stratigraphy of 723 cm sediment depth was created 
from nine core segments from two parallel coring locations, which 
were correlated based on X-ray fluorescence element profiles of Zr, 
Ti and K/Ti because lithological markers were not present in the core. 
The core consisted of uniform fine organic mud with no erosional un-
conformities and a sand layer at 720 cm (~13,800 cal yr BP) indicating 
the inundation of LV1 as lake levels rose (Wienhues et al., 2023). A 
robust and reproducible chronology for LV1 was established using 
30 radiocarbon dates (Figure  S1) measured with accelerator mass 

spectrometry; see Temoltzin-Loranca et al.  (2023) for more details 
on the coring campaign and chronology. Age estimates were rounded 
to the nearest 50 years and the error represents the 95% confidence 
interval (CI), which on average represents ±520 years (Figure S1). We 
extracted the BSi content of LV1 sediments using the procedure by 
Ohlendorf and Sturm (2008) and then measured it with inductively 
coupled plasma mass spectrometry. Before leaching, organic mate-
rial was removed from the sample with hydrogen peroxide (Mortlock 
& Froelich, 1989). BSi is reported as accumulation rate (mg BSi cm 
DW−2 year−1; DW, dry sediment weight) for LV1 to account for vari-
able sedimentation rate (Figure S1).

2.3  |  Sediment preparation

Invertebrate remains were isolated from lake sediment subsamples by 
chemical digestion and wet sieving (≥38- and ≥100-μm size fractions) 
and prepared for microscopy analyses by mounting on microscope 
slides for identification (Brooks et al., 2007; Korhola & Rautio, 2001; 
Szeroczyńska & Sarmaja-Korjonen, 2007; Walker & Paterson, 1985). 

F I G U R E  2  Summarised climate context globally and in East Africa over the past ~14,000 cal yr BP (a), as well as geochemical and diatom 
proxies analysed from two previously collected sediment cores from Lake Victoria, V95-2P (pink lines and bars) and V95-1P (orange lines), 
plotted along the associated age-depth models (b; adapted from Berke et al., 2012, Johnson et al., 2000, and Stager & Johnson, 2000). 
Berke et al. (2012) measured TEX86 temperature proxy values in V95-1P, to reconstruct down-core records of lake water temperatures, and 
ice-volume corrected δDwax of the C28 leaf wax fatty acid methyl ester (orange shading indicates the mean error of replicated analyses for 
each sample), to investigate regional rainout history. Stager and Johnson (2000) counted diatom community composition (%; only dominant 
taxa shown) in deep-water sediments from V95-2P. Biogenic silica (BSi, %) was measured for both cores, with grey shaded area indicating the 
relative absence of preserved diatom remains in V95-2P. References for human and climate summary include: 1Russell and Johnson (2005), 
2Marchant (2022), 3Battistel et al. (2017), 4Gasse (2000), 5Shanahan et al. (2015), 6Liu et al. (2017), 7Gasse et al. (2008), 8Carlson (2013), 
9Alley and Clark (1999), 10Tierney et al. (2008).
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    |  665KING et al.

All subfossil remains of cladocerans and aquatic dipterans (e.g., cara-
paces, headshields, mandibles, head capsules) were tabulated sepa-
rately and used to determine the minimum number of individuals as 
this method is less likely to overestimate the significance of individual 
taxa (Zharov et  al.,  2022). Individual remains were identified to the 
most detailed taxonomic level possible (Figure 3). Microscope slides 
were examined in their entirety to avoid bias arising from a non-
random distribution of remains under the coverslip. Published identifi-
cation literature for aquatic invertebrate remains focus on temperate 
rather than tropical regions (Brooks et al., 2007; Korosi & Smol, 2012a, 
2012b); therefore, many of the remains could only be identified to the 
genus level consistent with identifications of contemporary taxa (e.g., 
Ngupula et al., 2010; Vincent & Mwebaza-Ndawula, 2012). Taxa that 
did not occur in more than three samples at ≥1% relative abundance 
were not included in our analyses (Bredesen et al., 2002).

2.3.1  |  Identification and enumeration of Cladocera

Sediment subsamples (~1 cm3) of 1-cm thickness for Cladocera analy-
sis were collected along the length of the core (n = 103; sampling in-
tervals typically ranged from every 2 cm upcore to 15 cm downcore). 
The sediment was mixed with a 10% potassium hydroxide solution 
and heated to ~70°C for 10 min with gentle mixing to adequately 
separate cladoceran remains from other sediment particles and mini-
mise further fragmentation (Frey, 1959; Matveev, 1986; Verbruggen 
et al., 2010). The mixture was subsequently washed through a 38-
μm mesh to remove finer materials. The retained material was rinsed 
with tap water into labelled vials and a small amount of ethanol was 
added to prevent fungal growth. In order to calculate the concentra-
tion of individuals in each sample, one Lycopodium clavatum spore 
tablet containing a known amount of marker spores (Department 

of Geology, Lund University, Batch 3862, manufactured October 
2015, mean number of spores per tablet = 9,666, σ = 671; Supporting 
Information S1) was dissolved in each sample vial.

Following sediment preparation, the cladoceran solution (~75 μl) 
for each sample was mounted on glass slides while ensuring that the 
sample was adequately mixed. The solution was mounted on glass 
slides that were examined at ×200–400 magnification via bright-
field illumination using a compound microscope. Lycopodium marker 
spores were counted simultaneously to microfossils in order to cal-
culate the concentration of individuals in each sample, and a photo 
library of microfossil remains was compiled in a data repository for 
further analyses.

The taxonomic resolution of our analyses was limited by the pres-
ervation of conspicuous diagnostic features. All Bosmina headshields 
that displayed a clear lateral headpore were identified as B. longi-
rostris, which is further supported by contemporary zooplankton 
samples that identify it as the only Bosmina species in Lake Victoria 
(Mwebaza-Ndawula et  al.,  2005; Ngupula et  al.,  2010; Vincent & 
Mwebaza-Ndawula,  2012; Waya & Mwambungu,  2004; Yongo & 
Outa, 2017). Headshields and carapaces of Alona and Chydorus could 
not be reliably identified to species.

2.3.2  |  Identification and enumeration of 
Chaoborus and chironomids

Sediment subsamples (~4–7 cm3) intended for chironomid & 
Chaoborus analysis were collected approximately every 10 cm 
throughout the composite core (n = 83). Subsamples were wet-
sieved with no chemical preprocessing into two size fractions: 
100–200 μm (intermediate) and ≥200 μm (larger). Chironomid and 
Chaoborus remains were picked individually from both sieved 

F I G U R E  3  Representative images of invertebrate remains identified in Lake Victoria sediments: (1) headshield, (2) carapace, (3) mandible, 
(4) mentum, (5) ligula and (6) dorsomentum. Scale bars represent 0.05 mm.
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fractions using a stereomicroscope (×5–60 magnification) and 
placed on a microscope slide (Brooks et al., 2007). The slides were 
allowed to air-dry and then permanently affixed using Euparal (Carl 
Roth), and examined with a compound microscope at ×100–400 
magnification. The sum of the remains found in the two sieved frac-
tions was used for analyses.

Similar to Cladocera, Diptera remains were reliably iden-
tifiable only to the genus level (based on Brooks et  al.,  2007; 
Courtney-Mustaphi et  al.,  2024). However, previous work on 
short cores in Lake Victoria identified two species of Chaoborus: 
the large, offshore C. edulis and the smaller, littoral C. anomalus 
(Bridgeman, 2001). Earlier sediment core analyses of Lake Victoria 
identified Procladius remains as P. brevipetiolatus, which are widely 
distributed throughout East Africa (Eggermont et  al.,  2008; 
Freeman and Cranston, 1980), and the Chironomus taxon as C. imi-
cola (Verschuren et al., 2002).

2.4  |  Data analyses

The influx of individuals to the sediment was calculated by dividing 
the total number of individuals per cm3 (concentrations) by the num-
ber of years per cm of depth (sedimentation rate; Temoltzin-Loranca 
et  al.,  2023). For cladoceran subsamples, the volume of sediment 
screened for microfossils (Figure  S2) was determined by multiply-
ing the volume of the entire subsample by the proportion of marker 
spores counted relative to the total number of marker spores added 
(Szeroczyńska & Sarmaja-Korjonen, 2007). The influx of Chaoborus 
was calculated from the sum of Chaoborus and sediment volume 
from both sieve fractions. Influxes were square-root transformed 
for visualisation purposes. Additionally, we calculated the ratio of 
benthic to planktonic Cladocera taxa ([Alona + Chydorus]/Bosmina) 
to examine the succession from a benthic to planktonic community.

Multivariate nonparametric change point analysis (Matteson 
& James,  2014) was used to detect significant changes in the 
cladoceran and dipteran assemblages, respectively, as well as 
environmental variables (Figure  1). The number and location of 
change points was estimated using the E-Agglo method (ecp pack-
age, version 3.1.3; James & Matteson, 2023) in R version 4.2.2 (R 
Development Core Team,  2021). This method performs a hierar-
chical agglomerative estimation of multiple change points of both 
the mean and variance (α = 1; BSi change point based only on mean) 
of a time series by optimizing a goodness-of-fit statistic. It uses 
an initial segmentation of the data (member = number of observa-
tions) with the assumption that the observations are independent 
with a finite moment index. Change points with fewer than three 
observations on either side were omitted. We completed a linear 
interpolation of the chironomid taxa time series, to substitute miss-
ing values when paired with the Chaoborus time series, using the 
“interpTs” function (wql package, version 1.0.0; Jassby et al., 2022) 
in R version 4.2.2 (R Development Core Team, 2021). Additionally, 
we performed a permutation test (wPerm package, version 1.0.1; 
Weiss,  2022) for relationships between environmental variables 

(BSi, TEX86 and δDwax; values were linearly interpolated when nec-
essary) and dipteran taxa, using Pearson correlation coefficients. 
Correlations were not possible for cladoceran taxa because of lim-
ited overlap between datasets.

3  |  RESULTS

Cladoceran microfossils comprised three major taxonomic groups: 
Bosmina longirostris, Alona and Chydorus (Figures 4 and S3). Likewise, 
three main taxa were identified among dipteran microfossils: 
Chaoborus, Chironomus and Procladius (Figures 4 and S3). Count sizes 
were relatively low (Figure S2) in comparison to previous analyses in 
small lakes and in temperate biomes (Kurek et al., 2010). A minimum 
count threshold was not reached for samples below 140 cm core 
depth, corresponding to sediments older than ~1,420 cal yr BP, owing 
to microfossil scarcity; however, sampling effort was consistent, if not 
greater, downcore in terms of the number of samples and sediment vol-
ume examined (Figure S2). Additionally, the number of cladoceran taxa 
found throughout LV1 is consistent with the number of taxa identified 
in previous short core analyses from Lake Victoria (Bridgeman, 2001). 
Likewise, although total counts (ranging from 0 to 87 individuals) of 
chironomids in each sample were well below the typical recommended 
number, the total volume of sediment picked was much greater rela-
tive to most published analyses (Figure  S2; mean = 8 cm3). Sididae 
(n = 9), Cricotopus/Orthocladius (n = 11) and Tanytarsus (n = 13) remains 
were rarely and intermittently observed, and thus were not included 
in our statistical analyses (Figure S3). Additionally, other aquatic mi-
crofossils were observed throughout the core (Figure S4) and included 
two groups of algae (siliceous remains of Bacillariophyceae [Nitzschia 
and Cymatopleura] and Chlorophyceae [Pediastrum spp.; (Millington 
& Gawlik,  1967)]), as well as organic remains of flatworm oocytes 
(Platyhelminthes: Rhabdocoela; Haas, 1996).

The overall patterns of LV1 BSi throughout the late Pleistocene 
and Holocene record of Lake Victoria is strongly correlated with 
cores V95-1P and V95-2P (correlation with V95-2P, r = 0.54; cor-
relation with V95-1P, r = 0.57) despite some temporal and spatial 
offset (Figure 4). Accumulation rates of BSi in LV1 sediments ranged 
from ~16 to 210 mg BSi cm DW−2 year−1, displaying maximum val-
ues during lake refilling, a subsequent period of low accumulation 
marked by a significant change point at ~8,750 cal yr BP, and then a 
slight increase—although not to early Holocene values—near the end 
of the AHP. Two significant change points were identified in TEX86 
values throughout the lake's history at ~9,200 and ~11,100 cal yr BP, 
as well as a change point at ~5,050 cal yr BP in δDwax.

3.1 | Invertebrate community of the late Pleistocene 
to early Holocene (~13,700–9,100 cal yr BP)

The bottom-most sediments of LV1, representing ~13,700–
13,200 cal yr BP, contained remains of Chironomus and Procladius, 
with Chaoborus emerging shortly thereafter at ~13,200 cal yr BP 
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    |  667KING et al.

(Figure 4). Notably, cladoceran remains were absent during the late 
Pleistocene and into the Holocene (~13,700–4700 cal yr BP) at LV1. 
Chironomus remains were consistently present at low abundances 
starting from the inundation of LV1 throughout the entire remaining 
history of the lake. Meanwhile, Procladius abundances fell below de-
tection limits through much of this phase. Despite few Procladius ob-
servations, TEX86 palaeotemperature was negatively correlated with 
Procladius throughout this phase (r = −0.53; Table S1). Tanytarsus and 
Cricotopus/Orthocladius remains were not present during this early 
phase of the lake (Figure S3).

3.2  |  Rise of Chironomidae and Chaoborus during  
the African Humid Period (~9,100–1450 cal yr BP)

Chironomidae and Chaoborus remains were present at relatively low 
abundances throughout the sediment record with small, yet signifi-
cant, increased influxes from ~9,100 to 1,450 cal yr BP as indicated 
by multivariate change point analysis. Procladius appeared consist-
ently in the LV1 record starting at ~6,500 cal yr BP and remained 
present at low abundances until ~3650 cal yr BP when abundances 
fell below detection limits. Additionally, Tanytarsus and Cricotopus/

Orthocladius individuals were first observed during this phase 
of increased Diptera abundances (Figure  S3). During this phase, 
Chironomus, but not Procladius, was correlated with δDwax (r = 0.36) 
and TEX86 (r = −0.38, Table S1).

3.3  |  Rise of Cladocera in the late Holocene 
(~ 4,700–1,350 cal yr BP)

Although individual cladoceran remains were occasionally ob-
served during the first ten millennia of the lake's history (unidentifi-
able Chydoridae postabdomen: n = 5, B. longirostris carapace: n = 1), 
Cladocera remains were largely absent throughout the LV1 sediment 
core prior to the appearance of Alona at ~4700 cal yr BP (Figure 4). 
Alona remained at relatively low abundances for the following few 
millennia until the appearance of Chydorus and Bosmina consist-
ently in the sediment record at ~1,850 cal yr BP. This appearance was 
followed by the establishment of an abundant cladoceran assem-
blage, which is indicated by the multivariate changepoint detected 
at ~1,350 cal yr BP (Figure 4). Another notable feature of this phase 
included increased influxes of the diatom genera Cymatopleura and 
Nitzschia, as well as oocytes of the flatworm Rhabdocoela (Figure S4).

F I G U R E  4  Biogenic silica (BSi) concentrations throughout LV1 (dark blue; mg BSi g SW−1 year−1), V95-1P (orange; %; Johnson et al., 2000) 
and V95-2P (pink; %; Stager & Johnson, 2000) plotted along their original age–depth scales, as well as the square-root transformed influx 
of invertebrate microfossils (≥38 and ≥100 μm size fractions) observed throughout LV1. Grey tick marks on the right axis indicate sampling 
depths along the core. Orange dashed lines indicate the location of multivariate change points of the cladoceran and dipteran assemblages. 
The grey shaded zone represents the relative absence of preserved diatom remains in V95-2P (Stager & Johnson, 2000) and the blue dotted 
line indicates the end of first stage of rapid lake-level rise (Wienhues et al., 2023). Climate zones are referenced in Figure 2 and include: B/A, 
Bølling/Allerød; YD, Younger Dryas; AHP, African Humid Period (phases I & II); LH; late Holocene; TD, tropical droughts.
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3.4  |  Rise of an abundant cladoceran assemblage 
with planktonic dominance in the late Holocene 
(~1,350 cal yr BP–present)

All cladoceran taxa displayed substantial increases in abundance 
following the establishment of the new abundant cladoceran as-
semblage at ~1,350 cal yr BP, indicated by multivariate change 
point analysis (Figure  4). The appearance of B. longirostris in the 
sediment record was followed by a rapid decrease in the propor-
tion of benthic to planktonic cladoceran taxa, and B. longirostris 
quickly became the dominant species within the last ~1,200 years 
(Figure 5b). Following the transition to B. longirostris dominance, 
the community composition of cladoceran taxa, and thus the pro-
portion of benthic to planktonic taxa, remained relatively stable 
until the past few 100 years. In the most recent sediments, a dra-
matic increase in the abundance of B. longirostris coincided with 
decreases in benthic cladoceran taxa (Figure  5b). However, this 
increase may be an artefact of the increased sedimentation rate in 
the uppermost samples of LV1 rather than an ecological indicator. 
Likewise, Chaoborus, Procladius and Chironomus displayed steadily 
increasing abundances in the top sediment layers, with remains 
approximately two times greater in surface sediments than other 
sediment subsamples (Figure  4). BSi accumulation was posi-
tively correlated with both Chironomus (r = 0.76) and Procladius 
(r = 0.68) during this phase (Table S1). Tanytarsus and Cricotopus/
Orthocladius individuals continued to be occasionally observed 
during this phase (Figure S3). The influx of Nitzschia, Pediastrum 
spp. and Rhabdocoela oocytes also remained relatively higher 

than before the late Holocene with major increases in surface 
sediments (Figure S4).

4  |  DISCUSSION

Our results demonstrate multiple major invertebrate assemblage 
changes related to the first appearance and establishment of taxa 
for the eastern region of Lake Victoria in Tanzania during the late 
Pleistocene and Holocene. Firstly, Chaoborus, Chironomus and 
Procladius were all present at low abundances in the early history 
of LV1 (i.e., late Pleistocene–early Holocene, ~13,700–9,100 cal yr 
BP): a period when Cladocera remains were notably absent from 
the record. Secondly, all dipteran larvae exhibit a phase of increased 
abundance during the mid-Holocene (~9,100–1,450 cal yr BP) that 
corresponds with rising diatom production (BSi) after a period of low 
productivity during the early- to mid-Holocene. Thirdly, cladoceran 
taxa were largely absent from the sediment record until the appear-
ance of Alona at ~4,700 cal yr BP, which coincided with the end of 
the AHP (Liu et al., 2017; Shanahan et al., 2015). Lastly, the arrival of 
Chydorus and B. longirostris in the late Holocene at ~1,850 cal yr BP 
was followed by the initial establishment of an abundant cladoceran 
assemblage at ~1,350 cal yr BP. We then observe a progressive shift 
over the following 500 years toward conditions that continued to 
favour all cladocerans, particularly planktonic taxa, which has been 
sustained for the past ~1,200 years. Many species of the plankton 
community are not preserved in lake sediments (e.g., copepods, ro-
tifers), and only typically well-preserved cladoceran taxa (Bosminidae 

F I G U R E  5  Community composition of 
Chironomidae over the past ~13,700 cal yr 
BP (a) and Cladocera over the past 
~1,850 cal yr BP (b) from LV1. Black lines 
indicate the total abundance (number 
per sample) of chironomid individuals 
(a) and the ratio of benthic to planktonic 
cladoceran taxa (b).
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    |  669KING et al.

and Chydoridae; Hann, 1989) were observed in Lake Victoria sedi-
ments (consistent with results of short cores; Bridgeman,  2001) 
compared to the full suite of genera encountered in modern water-
column samples (Ceriodaphnia, Daphnia, Diaphanosoma, Moina and 
Macrothrix; Waya & Mwambungu, 2004; Ngupula et al., 2010) that 
are often not as well-preserved. Therefore, we recognise that the 
remains of cladoceran and dipteran taxa provide only limited insights 
into the entire planktonic food web of Lake Victoria. Nevertheless, 
we present the first study of cladoceran and dipteran assemblages 
over the modern history of Lake Victoria at a relatively high tem-
poral resolution compared to other studies in the region. The pat-
terns observed indicate major shifts in the invertebrate community 
that occur concomitant with major regional changes in climate and 
are consistent with inferences made from previous palaeolimnologi-
cal proxies from Lake Victoria. Differences between the spatial and 
temporal uncertainty of the various Lake Victoria sediment cores 
collected over the years leads to some difficulties integrating our 
results with those of previous studies (e.g., Berke et al., 2012; Stager 
& Johnson,  2000). For example, the chronology of V95-2P was 
based on only three radiocarbon dates, excluding dates between 
~1,450 and ~10,300 cal yr BP, compared to the chronology of LV1 
based on 30 radiocarbon dates (Temoltzin-Loranca et  al.,  2023). 
Therefore, further efforts examining lake conditions throughout the 
lake's history will be necessary to elucidate the specific drivers of 
the observed changes in the invertebrate assemblage beyond those 
examined here. However, this study still provides a valuable contri-
bution by discussing the first long-term record of invertebrate as-
semblage dynamics in Lake Victoria within the ecological context 
provided by previous studies, which subsequent studies with greater 
spatial analyses can build upon further.

4.1  |  Invertebrate community of the late 
Pleistocene to early Holocene (~13,700–9,100 cal yr 
BP)

During the early dynamic period of -evel change and subsequent 
stabilization, chironomid remains were consistently present at low 
abundances starting from the inundation of LV1 at ~13,700 cal yr 
BP, with Chaoborus then appearing ~13,200 cal yr BP. Subsequently, 
both Chironomus and Chaoborus are then consistently present into 
the Younger Dryas and AHP. Although, Procladius remains disap-
pear between ~12,800 and ~9,700 cal yr BP, abundances are likely 
to have fallen just below the detection limits. The oldest sediments 
at LV1 would have been deposited ~13,700 cal yr BP, almost con-
temporaneous with a period of very dynamic lake-level variations 
(Wienhues et al., 2023). Therefore, our record at LV1 may not cap-
ture the earliest stage of community succession in Lake Victoria 
~17,000–13,700 cal yr BP when the modern lake basin would have 
consisted of an extensive landscape of wetlands with fluctuating 
extents of inundation by variation in lake levels (Temoltzin-Loranca 
et al., 2023; Wienhues et al., 2023). Chironomus and Procladius are 

known to be early colonisers, surviving even in temporary pools of 
water from rainfall (Frouz et al., 2003; Layton & Voshell Jr., 1991; 
Verschuren, 1997); thus, it is unsurprising that they are established 
at the base of LV1 immediately following inundation. They tend to 
predominate in sediments characterised by fine sand or silt with 
high organic content (Pinder, 1986), which is typical for contempo-
rary Lake Victoria wetlands and sheltered vegetated embayments. 
Likewise, Cricotopus/Orthocladius are commonly found in littoral 
areas (Coffman & Ferrington,  1996). As lake levels continued to 
rise as a result of intensification of monsoon systems during the 
Bølling/Allerød (Wienhues et al., 2023), the appearance of pelagic 
Chaoborus and disappearance of benthic Procladius coincided with 
the transition to open lacustrine conditions at LV1 when water levels 
would have risen by >30 m within a few centuries. Establishment of 
a permanent outflow by ~13,200 cal yr BP (Wienhues et al., 2023) 
coincides with the temporary disappearance of Procladius in LV1, 
indicating that the accompanying environmental shifts (e.g., water 
depth, nutrient cycling) did not favour high abundances of Procladius. 
In other tropical African Lakes, Procladius tends to be less common 
with increasing salinity (Verschuren, Tibby, et al., 2000) suggesting 
that lake freshening (i.e., decreased salinity) was not a driver of the 
decreased abundances. Additionally, Procladius was negatively cor-
related with lake temperature throughout this phase (r = −0.53), no 
major deviations in lake temperature coincided with the disappear-
ance of Procladius in the sediment record. Despite climatic changes 
throughout the rest of this phase, Chironomus and Chaoborus contin-
ued to persist at relatively low abundances concurrent with consist-
ently high diatom production and gradually increasing temperatures.

A notable feature of this early phase is the veritable absence 
of Cladocera. Cladoceran remains are composed of essentially the 
same chitinous material as Chironomidae and Chaoborus. Therefore, 
the presence of Chaoborus and chironomid remains throughout the 
lowermost portion of the core suggests that the preservation envi-
ronment within the sediment column would likely to have been suit-
able for the preservation of cladoceran microfossils as well. Although 
we cannot exclude the role of taphonomic processes (e.g., degrada-
tion) definitively because cladoceran remains may not be as robust in 
terms of skeletal thickness as other chitinous remains (i.e., Chaoborus 
and Chironomidae remains), we did not observe substantial changes 
in preservation quality of the remains across the core. Therefore, 
we proceeded under the assumption that the absence of Cladocera 
in lower sediment intervals was not likely to have been the result of 
differential preservation. This is further supported by the presence 
of a few cladoceran remains before their initial appearance and com-
munity establishment, which suggests that Cladocera were likely to 
have been present at very low abundance below the detection limit. 
Owing to their intermediate position in the food web, abundances 
of cladoceran taxa would have been limited by climatic factors influ-
encing habitat conditions (e.g., water chemistry) and food availabil-
ity, competition with other zooplankton, or predation pressures (de 
Bernardi et al., 1987; Dodson et al., 2010). For example, large zoo-
plankton herbivores have been observed to suppress abundances 
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of small cladocerans (Vanni, 1986). However, given the ubiquitous 
nature of Cladocera across almost all freshwater, including in the 
tropics (Dumont, 1994), their relative absence throughout this time 
is notable. Their rarity upon first occurrence in the core also leads to 
some uncertainty over our inference about the precise arrival time in 
the lake and the dynamics of their rise in abundance.

4.2  |  Rise of Chironomidae and Chaoborus 
during the African Humid Period (~9100–1450 cal yr 
BP)

During the AHPI, increased abundances of Chaoborus, Chironomus, 
and Procladius occurred around ~9,100 cal yr BP. This timing coincided 
well with both the decrease in diatom production inferred from BSi, 
which exhibited a significant change point at ~8,750 cal yr BP with 
decreases observed even earlier and the TEX86 lake temperature 
change point at ~9,200 cal yr BP. Although Chironomus and Procladius 
co-varied throughout this phase (r = 0.6, p = 0.001), Chironomus were 
consistently more abundant than Procladius. Both taxa are known 
to be abundant in warm water lakes (Heiri et  al.,  2011) and lake 
temperatures were consistently within the optimal range for both 
Chironomus and Procladius (16–26°C; Eggermont et al., 2010). Taxon-
poor assemblages that are dominated by Chironomus and Procladius, 
are commonly indicative of oxygen limitation (Brooks et al., 2007; 
Quinlan & Smol, 2001). Whereas Chironomus is one of the most tol-
erant genera of low oxygen conditions as a result of their high hae-
moglobin concentrations (Nagell & Landahl, 1978; Panis et al., 1996), 
Procladius are typically less tolerant of anoxic conditions (Verschuren 
et al., 2002). Thus, the ratio of Procladius to Chironomus has previ-
ously been used in palaeolimnological research in Lake Victoria to 
make inferences about hypolimnetic oxygen (short core V96-5MC 
representing the past 20 years, 68 m water depth; Verschuren 
et  al.,  2002). Increasing relative contributions of Procladius to the 
chironomid assemblage during the AHPII through much of the late 
Holocene, as well as Tanytarsus and Cricotopus/Orthocladius, may be 
indicative of increased water-column mixing promoting oxygena-
tion of bottom waters. This is supported by the diatom record of 
V95-2P in which Stager and Johnson et  al.  (2000) attributed the 
transitions in the diatom assemblage, particularly increased BSi 
and replacement of Aulocoseira granulata with the more buoyant 
A. nyassensis, to a shift in seasonally restricted water-column mix-
ing that allowed increased diatom resuspension at the end of the 
AHPII (~5,000 cal yr BP). Procladius then drop below the detection 
limit around ~3,500 cal yr BP, which again coincides with a change 
in diatom deposition indicating progressive reduction of monsoonal 
wind activity (Stager & Johnson, 2000). Assuming that changes in 
diatom deposition were driven by water-column mixing (Stager & 
Johnson, 2000), the concurrent timing of changes in both diatoms 
and chironomids, as well as the moderate BSi correlation between 
influxes of Chironomus and Procladius suggests that the increase in 
chironomid abundance is influenced by water-column mixing.

By contrast, the transition between phases of the AHP is re-
ported to have exhibited reduced duration and intensity of mon-
soonal wind activity that led to stronger lake stratification and 
considerable reduction in offshore diatom production, indicated 
by the low BSi concentrations observed in all three cores and the 
absence of diatoms in V95-2P (Stager & Johnson, 2000). The reap-
pearance of Procladius during this period of reduced diatom pro-
duction suggests that other factors in addition to water-column 
mixing influence their abundances in Lake Victoria. Next to ox-
ygen concentrations, food quality and availability also may have 
favoured increased Procladius abundances given the (marginally 
significant) positive correlation with BSi. The consistent presence 
of Procladius occurred concurrently with the increased diatom pro-
duction toward the end of the AHPII. Procladius larvae are omni-
vores, and are known to engulf Cladocera, copepods, oligochaetes, 
and other chironomids, as well as algae (Antczak-Orlewska 
et al., 2021), and are considered to be more selective feeders than 
Chironomus (Hershey,  1986; Macdonald,  1956). Comparatively, 
Chironomus larvae are filter-feeders of sedimenting algal mate-
rial (Walshe,  1947) and/or non-selective deposit feeders (Kelly 
et al., 2004; Ptatscheck et al., 2017).

Similar to chironomids, Chaoborus abundances are regulated by 
both abiotic and biotic factors, including habitat structure (Luoto 
& Nevalainen, 2009), hypolimnetic oxygen (Quinlan & Smol, 2010; 
Ursenbacher et  al.,  2020), fish predation pressure (Sweetman & 
Smol, 2006; Uutala, 1990) and the zooplankton community (Sarmaja-
Korjonen, 2002). Chaoborus also displayed a mid-Holocene increase 
in abundance at the end of the AHPII. The observed increase of 
Chaoborus coincided with the period of increased diatom production 
around 5,000 cal yr BP, inferred from the BSi profile of LV1, which 
may have indirectly promoted the increase in Chaoborus through 
increased food availability for their zooplankton prey. However, 
this is difficult to assess because Chaoborus often prefer feeding on 
copepods rather than cladocerans (Swift & Fedorenko,  1975), and 
only the latter preserve in lake sediments. In addition, Chaoborus 
are known to tolerate low oxygen conditions (Jager & Walz, 2002), 
which enables diel vertical migration to optimise predator avoidance 
and foraging opportunities (Dawidowicz et al., 1990; Dodson, 1990; 
Irvine, 1997). Abundances of Chaoborus remains have been reported 
to be primarily driven by changes in hypolimnetic oxygen (Quinlan 
& Smol, 2010). Thus, their persistence in the deep-water lake condi-
tions of Lake Victoria throughout its history suggests the presence 
of bottom water refugia that limited visual predation, particularly by 
insectivorous and zooplanktivorous pelagic haplochromines (Witte 
et  al.,  1995). However, the concurrent increase in Procladius and 
changes in the diatom assemblage suggests increased oxygenation 
during this phase. The insignificant correlations between Chaoborus 
and the environmental proxies investigated here suggests that other 
factors, such as predation, influence changes in Chaoborus abun-
dance. Disentangling the (potentially interacting) effects of changes 
in hypolimnetic oxygen and predation pressure over millennial 
timescales will require further inference about the timing of trophic 
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guild emergence and changes in relative abundance of the fish hap-
lochromine community over time, which is potentially attainable 
from future morphological and ancient DNA analyses of fish bone 
and tooth fossils (Muschick et al., 2023).

4.3  |  Rise of Cladocera in the late Holocene 
(~ 4,700–1,350 cal yr BP)

As the AHP came to a gradual end, and drier, cooler conditions pre-
vailed over Lake Victoria (Berke et al., 2012; Shanahan et al., 2015), 
Alona was the first cladoceran taxon to emerge at ~4,700 cal yr BP. 
The appearance coincided with the late Holocene BSi maximum 
at ~5,000 cal yr BP and the significant change point in δDwax at 
~5,050 cal yr BP driven by increased aridity suggesting that climatic 
changes in the region indirectly facilitated habitat conditions that fa-
voured Alona. Following its appearance, Alona persisted at relatively 
low abundances for the following three millennia. Although typically 
known to be littoral, Alona species segregate spatially across the lit-
toral zone based on water depth, macrophytes, total organic carbon, 
conductivity and pH (Adamczuk, 2014). Thus, it is difficult to make 
additional inferences into their environmental tolerances owing to 
taxonomic uncertainty related to differentiating species in under-
studied tropical regions.

The appearance of Alona at the end of the AHPII may have been 
influenced by changes in both abiotic (e.g., hypolimnetic oxygen) 
and biotic (e.g., lake food-web structure) factors. For instance, in-
creased oxygenation of bottom waters, resulting from the return of 
seasonally-restricted wind mixing as suggested by the diatom as-
semblage following the mid-Holocene diatom decline, would have 
fostered a more suitable environment for benthic Alona because 
they have been observed to disappear if bottom waters become hy-
poxic (Sakuma et al., 2004). The concurrent increase of Procladius, 
Tanytarsus and Cricotopus/Orthocladius, which are typically less tol-
erant of anoxic conditions (Verschuren et al., 2002), further suggests 
increased oxygenation that favoured Alona. Alternatively, the late 
Holocene increase in diatom production, at ~5,000 cal yr BP, may 
have shifted the competitive outcomes in favour of small-bodied 
Alona. Stager and Johnson et  al.  (2000) reported increased abun-
dances of Nitzschia fonticola, a diatom taxa that is often epiphytic 
on cyanobacteria in African lakes (Kilham et al., 1986). In turn, cy-
anobacterial blooms would have benefitted Alona as they are often 
associated with increased dominance of small-bodied zooplankton 
(Jiang et  al.,  2017). A further possibility, although speculative, is 
that predation on Cladocera by both vertebrate and invertebrate 
predators altered the competitive interactions between Alona and 
other zooplankton taxa. Abundances of invertebrate predators 
(e.g., Chaoborus and Rhabdocoela, some of which are predatory) 
remained relatively stable throughout the early history of modern 
Lake Victoria, exhibiting a small increase in abundance concurrent 
with the appearance of Alona. Moreover, the influence of predation 
pressures of zooplanktivorous fish on Chaoborus, cladocerans and 

copepods throughout history remains a major question to be ad-
dressed for the Lake Victoria ecosystem.

4.4  |  Rise of an abundant cladoceran assemblage 
with planktonic dominance in the late Holocene 
(~1,350 cal yr BP–present)

The final major phase of change was the transition to an abun-
dant cladoceran assemblage at ~1,350 cal yr BP following the ap-
pearance of B. longirostris, Chydorus and Sididae. All cladoceran 
taxa were consistently more abundant throughout this phase 
compared to their absence throughout the early Holocene, indi-
cating a major change in lake conditions that favoured all clad-
ocerans. The timing of this rise is consistent with increased late 
Holocene aridity as indicated by increasing phytolith and diatom 
abundances since ~1,400 cal yr BP (Stager & Johnson, 2000); how-
ever, BSi remained relatively stable at LV1 during this time. Overall, 
the regional climate was becoming increasingly arid following the 
end of the AHPII (Temoltzin-Loranca et al., 2023), culminating in 
a severe drought between ~2,050 and 1,850 cal yr BP (Russell & 
Johnson, 2005). Subsequent arid periods occurred from ~1,700 to 
1,400, ~1,000–800, and ~150–100 cal yr BP (Battistel et al., 2017; 
Marchant, 2022). Although these climatic changes led to lake-level 
fluctuations throughout the past millennium (Tierney et al., 2013), 
the magnitude of changes in water depth for Lake Victoria is 
unclear, although certainly minor (<5 m) compared to its earli-
est stages of refilling (i.e., ~60 m; Wienhues et al., 2023). Rainfall 
and lake temperature proxies do not extend into this part of the 
lake's history. Furthermore, the relative error associated with our 
age-depth model makes inferring the precise timing difficult, par-
ticularly given the rapidly changing climate and intensification of 
human activities over the past millennia (Marchant, 2022).

In addition to the increased abundances of all cladocerans, a 
relatively quick transition to planktonic dominance suggests that 
the shift within the lake environment favoured dominance of plank-
tonic cladocerans. Within the cladoceran community, B. longirostris 
was the only planktonic species observed, whereas both Alona and 
Chydorus typically represent littoral taxa (Frey,  1988). Previous 
studies have revealed that the replacement of benthic Cladocera 
by pelagic ones has been observed in response to increasing phy-
toplankton abundance (Otake et  al.,  2021). Furthermore, B. lon-
girostris has been reported to dominate cladoceran assemblages 
following their invasion (Nevalainen et  al.,  2014; Nevalainen & 
Luoto, 2012). Ngoepe et al. (2023) observed an increase in pelagic 
haplochromine cichlid abundance, and a return of cyprinids, pre-
ceding the rise of the abundant cladoceran assemblage observed 
here. Changes in the fish community within the past century have 
led to shifts in abundances of small-bodied Cladocera (Van Zwieten 
et al., 2016). Thus, this transition may rather be linked to a restruc-
turing of the lake food web through a combination of increased 
food availability (despite declines in diatom abundance) and change 
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in predation pressure. However, given the unknown changes in 
primary production and the extent of zooplanktivory associated 
with the emergence of the Lake Victoria cichlid fish radiation, it 
is unclear what food-web effects there may have been on the in-
vertebrate community at this time. Size structure analyses of key 
morphological features of B. longirostris might provide additional 
insight into potential changes in zooplanktivorous fish predation 
during this phase (Korosi et al., 2013).

The expansion of all invertebrate taxa in the most recent sur-
face sediments may be related to recent ecological changes in Lake 
Victoria, yet the age uncertainties of the topmost sediments of LV1 
limit our ability to identify specific drivers. Recent ecological changes 
to the Lake Victoria ecosystem have been caused by anthropogenic 
pressures that occurred in short succession over the past century, 
including increases in phytoplankton production starting in the 
1930s that parallel human-population growth and agricultural ac-
tivity in the catchment (Hecky, 1993; Mugidde, 1993; Verschuren 
et  al.,  1998), the explosion of the population of the introduced 
Nile perch in the 1980s (Lates niloticus) (Ogutu-Ohwayo,  1990; 
Pringle, 2005), the major population declines of many native hap-
lochromine cichlids (Barel et al., 1985; Witte et al., 1992) and the 
recent recovery of a subset of these (Witte et al., 2012). For such 
questions and analyses, short cores collected from key areas of Lake 
Victoria and examined at a higher temporal resolution are needed to 
assess how recent ecosystem changes coincide with compositional 
changes in the invertebrate assemblage.

5  |  CONCLUSIONS

Few multi-millennial records of invertebrate population and assem-
blage dynamics exist in the African Great Lakes region, of which 
many focus on only one taxonomic group (e.g., chironomids) rather 
than the broader invertebrate community. Our late Pleistocene and 
Holocene record of the invertebrate assemblage preserved in a sedi-
ment core of Lake Victoria provides novel insights into the temporal 
dynamics of invertebrate community assembly, as well as the long-
term nature of ecosystem change in the world's largest tropical lake. 
We observed long phases of relative stability and minor changes in 
chironomids followed by a very dynamic late Holocene phase with 
the appearance of several cladoceran groups and the expansion of 
Cladocera, Chaoborus and chironomids. Several of the observed 
changes in the invertebrate assemblage occurred concurrently with 
changes in climatic conditions of East Africa and diatom productivity 
that had been previously recorded in Lake Victoria. However, a key 
question that remains is how the observed changes in the inverte-
brate assemblage are related, or not, to the adaptive radiation of en-
demic haplochromine cichlid fish in Lake Victoria. Palaeolimnological 
archives can help reveal how the temporal development of past eco-
logical environments may be related to evolutionary change within 
the lake community (Cuenca-Cambronero et al., 2022). In order to 
achieve progress toward that goal, a multi-proxy approach of multi-
ple sediment cores is needed to help make inferences about changes 

in organism–environment interactions that have culminated in the 
unique community composition of Lake Victoria today.
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